Users Also Read

MCQ's Search Engine

Electrical Engineering

Mechanical Engineering

Civil Engineering

Automobile Engineering

Chemical Engineering

Computer Engineering

Electronics Engineering

Medical Science Engg

Q1. | The maximum bending moment due to a train of wheel loads on a simply supported girder |

A. | always occurs at center of span [Wrong Answer] |

B. | always occurs under a wheel load [Correct Answer] |

C. | never occurs under a wheel load [Wrong Answer] |

D. | none of the above [Wrong Answer] |

View Answer
Explanation:-
Answer : BDiscuss it below :!! OOPS Login [Click here] is required to post your answer/resultHelp other students, write article, leave your comments |

**Also Read Similar Questions Below :**

⇒ A single rolling load of 8 kN rolls along a girder of 15 m span. The absolute maximum bending moment will be

8 kN.m

15 kN.m

30 kN.m

60 kN.m

⇒ The Castigliano's second theorem can be used to compute deflections

in statically determinate structures only

for any type of structure

at the point under the load only

for beams and frames only

⇒ A load 'W is moving from left to right support on a simply supported beam of span T. The maximum bending moment at 0.4 1 from the left support is

0.16 Wl

0.20 Wl

0.24 Wl

0.25 Wl

⇒ Rich cement mortars are more liable to cracking as compared to lean mortars because rich mortars have

high shrinkage

less strength

both (a) and (b)

none of above

⇒ Number of unknown internal forces in each member of a rigid jointed plane frame is

1

2

3

6

⇒ If there are m unknown member forces, r unknown reaction components and j number of joints, then the degree of static indeterminacy of a pin-jointed plane frame is given by

m + r + 2j

m - r + 2j

m + r - 2j

m + r - 3j

⇒ Degree of static indeterminacy of a rigid-jointed plane frame having 15 members, 3 reaction components and 14 joints is

2

3

6

8

⇒ Select the correct statement

Flexibility matrix is a square symmetrical matrix

Stiffness matrix is a square symmetrical matrix

both (a) and (b)

none of the above

⇒ The number of independent equations to be satisfied for static equilibrium of a plane structure is

1

2

3

6

⇒ While using three moments equation, a fixed end of a continuous beam is replaced by an additional span of

zero length

infinite length

zero moment of inertia

none of the above

⇒ The deflection at any point of a perfect frame can be obtained by applying a unit load at the joint in

vertical direction

horizontal direction

inclined direction

the direction in which the deflection is required

⇒ The carryover factor in a prismatic member whose far end is fixed is

0

1/2

3/4

1

⇒ Degree of kinematic indeterminacy of a pin-jointed plane frame is given by

2j - r

j - 2r

3j - r

2j + r

⇒ In plastic analysis the shape factor for a circular section is

1.5

1.6

1.7

1.75

⇒ The width of the analogous column in the method of column analogy is

2/EI

1/EI

1/2 EI

1/4 EI

⇒ Which of the following methods of structural analysis is a force method ?

slope deflection method

column analogy method

moment distribution method

none of the above

⇒ When a load crosses a through type Pratt truss in the direction left to right, the nature of force in any diagonal member in the left half of the span would

change from compression to tension

change from tension to compression

always be compression

always be tension

⇒ The number of independent displacement components at each joint of a rigid-jointed space frame is

1

2

3

6

⇒ The force method in structural analysis always ensures

Equilibrium

Kinematically admissible t'orces

Equilibrium of forces

None of the above

⇒ When a uniformly distributed load, shorter than the span of the girder, moves from left to right, then the conditions for maximum bending moment at a section is that

the head of the load reaches the section

the tail of the load reaches the section

the load position should be such that the section divides it equally on both sides

the load position should be such that the section divides the load in the same ratio as it divides the span

⇒ In a cavity wall, both leaves of which are load bearing, the effective thickness is taken as

sum of thickness of both leaves

two-third of the sum of thickness of both the leaves

actual thickness of the stronger leaf

larger of (b) and (c)

⇒ The three moment equation in structural analysis is basically a

Stiffness method

Displacement method

Energy method

Flexibility method

⇒ Weaker mortar. Of these statements

2 and 3 are correct

1 and 2 are correct

1 and 3 are correct

1, 2 and 3 are correct

⇒ A 200 mm thick wall made of modular bricks is 5 m long between cross walls and 3.8 m clear height between RCC slabs at top and bottom. The slenderness ratio of the wall is

15

19

20

25

⇒ The maximum bending moment due to a train of wheel loads on a simply supported girder

always occurs at center of span

always occurs under a wheel load

never occurs under a wheel load

none of the above

⇒ The stiffness method in structural analysis is also known as

Unit load method

Consistent deformation method

Force method

Displacement method

⇒ In the case of panel wall subjected to horizontal loads at right angles to the plane of the wall, with the mortar not leaner than Ml type, tensile stress in bending in the vertical direction may be allowed to the extent of

0.4 kg/cm2

0.7 kg/cm2

1.0 kg/cm2

1.2 kg/cm2

⇒ The horizontal thrust due to rise in temperature in a semicircular two-hinged arch of radius R is proportional to

R

R

^{2}

1/R

1/R

^{2}

⇒ In moment distribution method the sum of distribution factors of all the members meeting at any joint is always

Zero

< 1

> 1

= 1

⇒ If the horizontal cross-sectional area of a wall is 1200 cm2, then the basic stress shall be multiplied by a reduction factor equal to

0 6

0.75

0.85

0.95