Users Also Read

MCQ's Search Engine

Electrical Engineering

Mechanical Engineering

Civil Engineering

Automobile Engineering

Chemical Engineering

Computer Engineering

Electronics Engineering

Medical Science Engg

Q1. | The magnitude of the induced e.m.f. in a conductor depends on the |

A. | flux density of the magnetic field [Wrong Answer] |

B. | amount of flux cut [Wrong Answer] |

C. | amount of flux linkages [Wrong Answer] |

D. | rate of change of flux-linkages [Correct Answer] |

View Answer
Explanation:-
Answer : DDiscuss it below :!! OOPS Login [Click here] is required to post your answer/resultHelp other students, write article, leave your comments |

**Also Read Similar Questions Below :**

⇒ Which circuit element(s) will oppose the change in circuit current?

Resistance only

Inductance only

Capacitance only

Inductance and capacitance

⇒ Which of the following statements is cotrect ?

The inductance of the coil carrying a constant D.C. current will change the current into pulses

The inductance of the coil carrying a constant D.C. current will increase the current

The inductance of the coil carrying a constant D.C. current will not affect the current

The inductance of the coil carrying a constant D.C. current will decrease the current

⇒ A 500 turns solenoid develops an average induced voltage of 60 V. Over what time interval must a flux change of 0.06 Wb occur to produce such a voltage?

0.01 s

0.1 s

0.5 s

5 s

⇒ As per Faraday's laws of electromagnetic induction, an e.m.f. is induced in a conductor whenever it

lies perpendicular to the magnetic flux

lies in a magnetic field

cuts magnetic flux

moves parallel to the direction of the magnetic field

⇒ A conductor carries 125 amperes of current under 60° to a magnetic field of 1.1 tesla. The force on the conductor will be nearly

50 N

120 N

240 N

480 N

⇒ A laminated iron core has reduced eddy-current losses because

more wire can he used with less D.C. resistance in coil

the laminations are insulated from each other

the magnetic flux is concentrated in the air gap of the core

the laminations are stacked vertically

⇒ Higher the self-inductance of a coil,

lesser its weher-turns

lower the e.m.f. induced

greater the flux produced by it

longer the dela' in establishing steady current through it

⇒ A conductor 2 metres long moves at right angles to a magnetic field of flux densit 1 tesla with a velocity of 12.5 m/s. The induced e.m.f. in the conductor will be

10 V

15 V

25 V

50 V

⇒ The core of a coil has a length of 200 mm. The inductance of coil is 6 mH. If the core length is doubled, all other quantities, remaining the same, the inductance will be

3 mH

12 mH

24 mH

48 mH

⇒ A coil with negligible resistance has 50 V across it with 10 mA. The inductive reactance is

50 ohms

500 ohms

1000 ohms

5000 ohms

⇒ A crack in the magnetic path of an inductor will result in

unchanged inductance

increased inductance

zero inductance

reduced inductance

⇒ Which of the following circuit elements will oppose the change in circuit current?

Capacitance

Inductance

Resistance

All of the above

⇒ Air-core coils are practically free from

hysteresis losses

eddy current losses

both (a) and (b)

none of the above

⇒ The inductance df a coil will increase under all the following conditions except

when more length for the same number of turns is provided

when the number of turns of the coil increase

when more area for each turn is provided

when permeability of the core increases

⇒ Find the force acting on a conductor 3m long carrying a current of 50 amperes at right angles to a magnetic field having a flux density of 0.67 tesla.

100 N

400 N

600 N

1000 N

⇒ The law that the induced e.m.f. and current always oppose the cause producing them is due to

Faraday

Lenz

Newton

Coulomb

⇒ The magnitude of the induced e.m.f. in a conductor depends on the

flux density of the magnetic field

amount of flux cut

amount of flux linkages

rate of change of flux-linkages

⇒ For a purely inductive circuit which of the following is true ?

Apparent power is zero

Relative power is zero

Actual power of the circuit is zero

Any capacitance even if present in the circuit will not be charged

⇒ In an iron cored coil the iron core is removed so that the coil becomes an air cored coil. The inductance of the coil will

increase

decrease

remain the same

initially increase and then decrease

⇒ In case of an inductance, current is proportional to

voltage across the inductance

magnetic field

both (a) and (b)

neither (a) nor (b)

⇒ The property of coil by which a counter e.m.f. is induced in it when the current through the coil chatiges is known as

self-inductance

mutual inductance

series aiding inductace

capacitance

⇒ A coil induces 350 mV when the current changes at the rate of 1 A/s. The value of inductance is

3500 mH

350 mH

250 mH

150 mH

⇒ An open coil has

zero resistance and inductance

infinite resistance and zero inductance

infinite resistance and normal inductance

zero resistance and high inductance

⇒ The direction of induced e.m.f. can be found by

Laplace's law

Lenz's law

Fleming's right hand rule

Kirchhoffs voltage law

⇒ Which of the following inductor will have the least eddy current losses?

Air core

Laminated iron core

Iron core

Powdered iron core

⇒ In case all the flux from the current in coil 1 links with coil 2, the co-efficient of coupling will be

2.0

1.0

0.5

zero

⇒ Two coils have inductances of 8 mH and 18 mH and a co-efficient of coupling of 0.5. If the two coils are connected in series aiding, the total inductance will be

32 mH

38 mH

40 mH

48 mH

⇒ The self inductances of two coils are 8 mH and 18 mH If the co-efficients of coupling is 0.5, the mutual inductance of the coils is

4 mH

5 mH

6 mH

12 mH

⇒ The co-efficient of self-inductance for a coil is given as

NI/Φ

NΦ/I

NI

^{2}/Φ

NΦ/I

^{2}

⇒ Current changing from 8 A to 12 A in one second induced 20 volts in a coil. The value of inductance is

5 mH

10 mH

5 H

10 H