Users Also Read

MCQ's Search Engine

Electrical Engineering

Mechanical Engineering

Civil Engineering

Automobile Engineering

Chemical Engineering

Computer Engineering

Electronics Engineering

Medical Science Engg

Q1. | The logarithm of 0.0625 to the base 2 is : |

A. | -4 [Correct Answer] |

B. | -2 [Wrong Answer] |

C. | 0.25 [Wrong Answer] |

D. | 0.5 [Wrong Answer] |

View Answer
Explanation:-
Answer : ADiscuss it below :Let log_{2} 0.0625 = n.
Then, 2^{n} = 0.0625 = ^{625}/_{10000}^{n} =
^{1}/_{16}^{n} = 2^{- 4} ⇔ n = - 4.
log^{2} 0.0625 = - 4.
!! OOPS Login [Click here] is required to post your answer/resultHelp other students, write article, leave your comments |

**Also Read Similar Questions Below :**

⇒ If log 2 = 0.30103, the number of digits in 26

^{4}is

18

19

20

21

⇒ F log 2 = 0.30103, the number of digits in 2

^{128}is

38

39

40

41

⇒ If log 27 = 1.431, then the value of log 9 is :

0.934

0.945

0.954

0.958

⇒ If log 2 = 0.30103 and log 3 = 0.4771, find the number of digits in (648)

^{5}.

15

14

12

13

⇒ If log(64)= 1.806, log(16) = ?

1.204

0.903

1.806

None of these

⇒ If log 2 = 0.30103, Find the number of digits in 2

^{56}is

17

19

23

25

⇒ If log

_{10}2 = 0.30103, find the value of log

_{10}50.

1.69897

0.69897

2.30103

1.30103

⇒ If log

_{10}2 = 0.3010, what is the value of log

_{10}1600 ?

None of these

5.204

1.204

3.204

⇒ If loga/b+logb/a=log(a+b), then

a = b

a + b = 1

a - b = 1

a2 - b2 = 1

⇒ The logarithm of 0.0625 to the base 2 is :

-4

-2

0.25

0.5

⇒ 36

^{ (log6 4)}

4

8

16

64

⇒ Simplify: [1/log

_{xy}(xyz) + 1/log

_{yz}(xyz) + 1/log

_{zx}(xyz)]

1

2

3

4

⇒ If log

_{10}5 + log

_{10}(5x + 1) = log

_{10}(x + 5) + 1, then x is equal to:

4

3

2

1

⇒ Log 75/16 - 2log 5/9 + log 32/243

log2

log3

log5

log6

⇒ Log

_{9}27log

_{27}9

3/2

2/3

5/6

6/5

⇒ If log

_{2}[log

_{3}(log

_{2}x)] = 1, x is equal to:

None of these

512

256

1024

⇒ Log

_{5}3*log

_{27}25

1/3

1

2/3

3/2

⇒ Log

_{3}27

1

-1

3

-3

⇒ The value of log

_{2}16 is :

^{1}/

_{8}

4

8

16

⇒ If log

_{10}125 + log

_{10}8 = x, then x is equal to :

^{1}/

_{3}

0.064

-3

3

⇒ If log

_{x}4 =

^{1}/

_{4}

16

64

128

256

⇒ If log

_{8(1/2)}x = (10/3), find the value of x

14

32

64

1024

⇒ If log 2 = 0.3010 and log 3 = 0.4771, the values of log

*512 is*

_{5}2.875

3.875

4.875

5.875

⇒ Log 360 is equal to :

2 log 2 + 3 log 3

3 log 2 + 2 log 3

3 log 2 + 2 log 3 - log 5

3 log 2 + 2 log 3 + log 5

⇒ If log 27 = 1.431, then the value of log 9 is

0.754

0.854

0.954

0.654

⇒ What is the characteristic of the logarithm of 0.0000134?

5

-5

6

-6