Users Also Read

MCQ's Search Engine

Electrical Engineering

Mechanical Engineering

Civil Engineering

Automobile Engineering

Chemical Engineering

Computer Engineering

Electronics Engineering

Medical Science Engg

Q1. | The co-efficient of coupling between two air core coils depends on |

A. | self-inductance of two coils only [Wrong Answer] |

B. | mutual inductance between two coils only [Wrong Answer] |

C. | mutual inductance and self inductance of two coils [Correct Answer] |

D. | none of the above [Wrong Answer] |

View Answer
Explanation:-
Answer : CDiscuss it below :!! OOPS Login [Click here] is required to post your answer/resultHelp other students, write article, leave your comments |

**Also Read Similar Questions Below :**

⇒ The direction of induced e.m.f. can be found by

Laplace's law

Lenz's law

Fleming's right hand rule

Kirchhoffs voltage law

⇒ Which of the following circuit elements will oppose the change in circuit current?

Capacitance

Inductance

Resistance

All of the above

⇒ Which circuit element(s) will oppose the change in circuit current?

Resistance only

Inductance only

Capacitance only

Inductance and capacitance

⇒ Find the force acting on a conductor 3m long carrying a current of 50 amperes at right angles to a magnetic field having a flux density of 0.67 tesla.

100 N

400 N

600 N

1000 N

⇒ As per Faraday's laws of electromagnetic induction, an e.m.f. is induced in a conductor whenever it

lies perpendicular to the magnetic flux

lies in a magnetic field

cuts magnetic flux

moves parallel to the direction of the magnetic field

⇒ In case all the flux from the current in coil 1 links with coil 2, the co-efficient of coupling will be

2.0

1.0

0.5

zero

⇒ Higher the self-inductance of a coil,

lesser its weher-turns

lower the e.m.f. induced

greater the flux produced by it

longer the dela' in establishing steady current through it

⇒ Current changing from 8 A to 12 A in one second induced 20 volts in a coil. The value of inductance is

5 mH

10 mH

5 H

10 H

⇒ A coil with negligible resistance has 50 V across it with 10 mA. The inductive reactance is

50 ohms

500 ohms

1000 ohms

5000 ohms

⇒ Lenz's law is a consecluence of the law of conservation of

induced current

charge

enery

induced e.m.f.

⇒ The magnitude of the induced e.m.f. in a conductor depends on the

flux density of the magnetic field

amount of flux cut

amount of flux linkages

rate of change of flux-linkages

⇒ Which of the following statements is cotrect ?

The inductance of the coil carrying a constant D.C. current will change the current into pulses

The inductance of the coil carrying a constant D.C. current will increase the current

The inductance of the coil carrying a constant D.C. current will not affect the current

The inductance of the coil carrying a constant D.C. current will decrease the current

⇒ Air-core coils are practically free from

hysteresis losses

eddy current losses

both (a) and (b)

none of the above

⇒ Two 300 µH coils in series without mutual coupling have a total inductance of

300 µH

600 µH

150 µH

75 µH

⇒ A conductor carries 125 amperes of current under 60° to a magnetic field of 1.1 tesla. The force on the conductor will be nearly

50 N

120 N

240 N

480 N

⇒ An open coil has

zero resistance and inductance

infinite resistance and zero inductance

infinite resistance and normal inductance

zero resistance and high inductance

⇒ For a purely inductive circuit which of the following is true ?

Apparent power is zero

Relative power is zero

Actual power of the circuit is zero

Any capacitance even if present in the circuit will not be charged

⇒ Two coils have self-inductances of 10 H and 2 H, the mutual inductance being zero. If the two coils are connected in series, the total inductance will be

6 H

8 H

12 H

24 H

⇒ A 200 turn coil has an inductance of 12 mH. If the number of turns is increased to 400 turns, all other quantities (area, length etc.) remaining the same, the inductance will be

6 mH

14 mH

24 mH

48 mH

⇒ The self inductances of two coils are 8 mH and 18 mH If the co-efficients of coupling is 0.5, the mutual inductance of the coils is

4 mH

5 mH

6 mH

12 mH

⇒ Which of the following circuit element stores energy in the electromagnetic field?

Inductance

Condenser

Variable resistor

Resistance

⇒ A coil is wound on iron core which carries current I. The self induced voltage in the coil is not affected by

variation in coil current

variation in voltage to the coil

change of number of turns of coil

the resistance of magnetic path

⇒ Ifcurrentin a conductor increases then according to Lenz's law self-induced voltage will

aid the increasing current

tend to decrease the amount of current

produce current opposite to the increasing current

aid tite applied voltage

⇒ Which of the following is unit of inductance?

Ohm

Henry

Ampere turns

Webers/metre

⇒ A coil induces 350 mV when the current changes at the rate of 1 A/s. The value of inductance is

3500 mH

350 mH

250 mH

150 mH

⇒ A conductor 2 metres long moves at right angles to a magnetic field of flux densit 1 tesla with a velocity of 12.5 m/s. The induced e.m.f. in the conductor will be

10 V

15 V

25 V

50 V

⇒ A laminated iron core has reduced eddy-current losses because

more wire can he used with less D.C. resistance in coil

the laminations are insulated from each other

the magnetic flux is concentrated in the air gap of the core

the laminations are stacked vertically

⇒ In case of an inductance, current is proportional to

voltage across the inductance

magnetic field

both (a) and (b)

neither (a) nor (b)

⇒ An e.m.f. of 16 volts is induced in a coil of inductance 4 H. The rate of change of current must be

64 A/s

32 A/s

16 A/s

4 A/s

⇒ In an iron cored coil the iron core is removed so that the coil becomes an air cored coil. The inductance of the coil will

increase

decrease

remain the same

initially increase and then decrease