Users Also Read

MCQ's Search Engine

Electrical Engineering

Mechanical Engineering

Civil Engineering

Automobile Engineering

Chemical Engineering

Computer Engineering

Electronics Engineering

Medical Science Engg

Q1. | Current changing from 8 A to 12 A in one second induced 20 volts in a coil. The value of inductance is |

A. | 5 mH [Wrong Answer] |

B. | 10 mH [Wrong Answer] |

C. | 5 H [Correct Answer] |

D. | 10 H [Wrong Answer] |

View Answer
Explanation:-
Answer : CDiscuss it below :Murli Said on 2015-08-16 00:28:57Required charging current 12-8=4 amp In one second 4x1=4 So 20/4=5 !! OOPS Login [Click here] is required to post your answer/resultHelp other students, write article, leave your comments |

**Also Read Similar Questions Below :**

⇒ Which of the following circuit elements will oppose the change in circuit current?

Capacitance

Inductance

Resistance

All of the above

⇒ Which of the following is unit of inductance?

Ohm

Henry

Ampere turns

Webers/metre

⇒ Two coils have inductances of 8 mH and 18 mH and a co-efficient of coupling of 0.5. If the two coils are connected in series aiding, the total inductance will be

32 mH

38 mH

40 mH

48 mH

⇒ Which of the following statements is cotrect ?

The inductance of the coil carrying a constant D.C. current will change the current into pulses

The inductance of the coil carrying a constant D.C. current will increase the current

The inductance of the coil carrying a constant D.C. current will not affect the current

The inductance of the coil carrying a constant D.C. current will decrease the current

⇒ The direction of induced e.m.f. can be found by

Laplace's law

Lenz's law

Fleming's right hand rule

Kirchhoffs voltage law

⇒ Which circuit element(s) will oppose the change in circuit current?

Resistance only

Inductance only

Capacitance only

Inductance and capacitance

⇒ The magnitude of the induced e.m.f. in a conductor depends on the

flux density of the magnetic field

amount of flux cut

amount of flux linkages

rate of change of flux-linkages

⇒ An e.m.f. of 16 volts is induced in a coil of inductance 4 H. The rate of change of current must be

64 A/s

32 A/s

16 A/s

4 A/s

⇒ The inductance df a coil will increase under all the following conditions except

when more length for the same number of turns is provided

when the number of turns of the coil increase

when more area for each turn is provided

when permeability of the core increases

⇒ A 200 turn coil has an inductance of 12 mH. If the number of turns is increased to 400 turns, all other quantities (area, length etc.) remaining the same, the inductance will be

6 mH

14 mH

24 mH

48 mH

⇒ A conductor 2 metres long moves at right angles to a magnetic field of flux densit 1 tesla with a velocity of 12.5 m/s. The induced e.m.f. in the conductor will be

10 V

15 V

25 V

50 V

⇒ Which of the following circuit element stores energy in the electromagnetic field?

Inductance

Condenser

Variable resistor

Resistance

⇒ Which of the following is not a unit of inductance?

Henry

Coulomb/volt ampere

Volt second per ampere

All of the above

⇒ Which of the following inductor will have the least eddy current losses?

Air core

Laminated iron core

Iron core

Powdered iron core

⇒ The co-efficient of coupling between two air core coils depends on

self-inductance of two coils only

mutual inductance between two coils only

mutual inductance and self inductance of two coils

none of the above

⇒ A coil is wound on iron core which carries current I. The self induced voltage in the coil is not affected by

variation in coil current

variation in voltage to the coil

change of number of turns of coil

the resistance of magnetic path

⇒ Two coils have self-inductances of 10 H and 2 H, the mutual inductance being zero. If the two coils are connected in series, the total inductance will be

6 H

8 H

12 H

24 H

⇒ As per Faraday's laws of electromagnetic induction, an e.m.f. is induced in a conductor whenever it

lies perpendicular to the magnetic flux

lies in a magnetic field

cuts magnetic flux

moves parallel to the direction of the magnetic field

⇒ An averaVoltage of 10 V is induced in a 250 turns solenoid as a result of a change in flux which occurs in 0.5 second. The total flux change is

20 Wb

2 Wb

0.2 Wb

0.02 Wb

⇒ In case of an inductance, current is proportional to

voltage across the inductance

magnetic field

both (a) and (b)

neither (a) nor (b)

⇒ The law that the induced e.m.f. and current always oppose the cause producing them is due to

Faraday

Lenz

Newton

Coulomb

⇒ Find the force acting on a conductor 3m long carrying a current of 50 amperes at right angles to a magnetic field having a flux density of 0.67 tesla.

100 N

400 N

600 N

1000 N

⇒ The self inductances of two coils are 8 mH and 18 mH If the co-efficients of coupling is 0.5, the mutual inductance of the coils is

4 mH

5 mH

6 mH

12 mH

⇒ Lenz's law is a consecluence of the law of conservation of

induced current

charge

enery

induced e.m.f.

⇒ The property of coil by which a counter e.m.f. is induced in it when the current through the coil chatiges is known as

self-inductance

mutual inductance

series aiding inductace

capacitance

⇒ Mutually inductance between two magnetically-coupled coils depends on

permeability of the core

the number of their turns

cross-sectional area of their common core

all of the above

⇒ In an iron cored coil the iron core is removed so that the coil becomes an air cored coil. The inductance of the coil will

increase

decrease

remain the same

initially increase and then decrease

⇒ Air-core coils are practically free from

hysteresis losses

eddy current losses

both (a) and (b)

none of the above

⇒ A coil induces 350 mV when the current changes at the rate of 1 A/s. The value of inductance is

3500 mH

350 mH

250 mH

150 mH

⇒ An open coil has

zero resistance and inductance

infinite resistance and zero inductance

infinite resistance and normal inductance

zero resistance and high inductance