Users Also Read

MCQ's Search Engine

Electrical Engineering

Mechanical Engineering

Civil Engineering

Automobile Engineering

Chemical Engineering

Computer Engineering

Electronics Engineering

Medical Science Engg

Q1. | As per Faraday's laws of electromagnetic induction, an e.m.f. is induced in a conductor whenever it |

A. | lies perpendicular to the magnetic flux [Wrong Answer] |

B. | lies in a magnetic field [Wrong Answer] |

C. | cuts magnetic flux [Correct Answer] |

D. | moves parallel to the direction of the magnetic field [Wrong Answer] |

View Answer
Explanation:-
Answer : CDiscuss it below :!! OOPS Login [Click here] is required to post your answer/resultHelp other students, write article, leave your comments |

**Also Read Similar Questions Below :**

⇒ Which of the following is unit of inductance?

Ohm

Henry

Ampere turns

Webers/metre

⇒ A coil induces 350 mV when the current changes at the rate of 1 A/s. The value of inductance is

3500 mH

350 mH

250 mH

150 mH

⇒ Lenz's law is a consecluence of the law of conservation of

induced current

charge

enery

induced e.m.f.

⇒ Ifcurrentin a conductor increases then according to Lenz's law self-induced voltage will

aid the increasing current

tend to decrease the amount of current

produce current opposite to the increasing current

aid tite applied voltage

⇒ A laminated iron core has reduced eddy-current losses because

more wire can he used with less D.C. resistance in coil

the laminations are insulated from each other

the magnetic flux is concentrated in the air gap of the core

the laminations are stacked vertically

⇒ In case of an inductance, current is proportional to

voltage across the inductance

magnetic field

both (a) and (b)

neither (a) nor (b)

⇒ A coil is wound on iron core which carries current I. The self induced voltage in the coil is not affected by

variation in coil current

variation in voltage to the coil

change of number of turns of coil

the resistance of magnetic path

⇒ Which of the following circuit element stores energy in the electromagnetic field?

Inductance

Condenser

Variable resistor

Resistance

⇒ Which of the following statements is cotrect ?

The inductance of the coil carrying a constant D.C. current will change the current into pulses

The inductance of the coil carrying a constant D.C. current will increase the current

The inductance of the coil carrying a constant D.C. current will not affect the current

The inductance of the coil carrying a constant D.C. current will decrease the current

⇒ Which circuit element(s) will oppose the change in circuit current?

Resistance only

Inductance only

Capacitance only

Inductance and capacitance

⇒ A crack in the magnetic path of an inductor will result in

unchanged inductance

increased inductance

zero inductance

reduced inductance

⇒ A coil with negligible resistance has 50 V across it with 10 mA. The inductive reactance is

50 ohms

500 ohms

1000 ohms

5000 ohms

⇒ A conductor 2 metres long moves at right angles to a magnetic field of flux densit 1 tesla with a velocity of 12.5 m/s. The induced e.m.f. in the conductor will be

10 V

15 V

25 V

50 V

⇒ An e.m.f. of 16 volts is induced in a coil of inductance 4 H. The rate of change of current must be

64 A/s

32 A/s

16 A/s

4 A/s

⇒ Two coils have self-inductances of 10 H and 2 H, the mutual inductance being zero. If the two coils are connected in series, the total inductance will be

6 H

8 H

12 H

24 H

⇒ The magnitude of the induced e.m.f. in a conductor depends on the

flux density of the magnetic field

amount of flux cut

amount of flux linkages

rate of change of flux-linkages

⇒ A 500 turns solenoid develops an average induced voltage of 60 V. Over what time interval must a flux change of 0.06 Wb occur to produce such a voltage?

0.01 s

0.1 s

0.5 s

5 s

⇒ An averaVoltage of 10 V is induced in a 250 turns solenoid as a result of a change in flux which occurs in 0.5 second. The total flux change is

20 Wb

2 Wb

0.2 Wb

0.02 Wb

⇒ Which of the following inductor will have the least eddy current losses?

Air core

Laminated iron core

Iron core

Powdered iron core

⇒ Mutually inductance between two magnetically-coupled coils depends on

permeability of the core

the number of their turns

cross-sectional area of their common core

all of the above

⇒ As per Faraday's laws of electromagnetic induction, an e.m.f. is induced in a conductor whenever it

lies perpendicular to the magnetic flux

lies in a magnetic field

cuts magnetic flux

moves parallel to the direction of the magnetic field

⇒ Both the number of turns and the core length of an inductive coil are doubled. Its self-inductance will be

unaffected

doubled

halved

quadrupled

⇒ The direction of induced e.m.f. can be found by

Laplace's law

Lenz's law

Fleming's right hand rule

Kirchhoffs voltage law

⇒ The property of coil by which a counter e.m.f. is induced in it when the current through the coil chatiges is known as

self-inductance

mutual inductance

series aiding inductace

capacitance

⇒ In an iron cored coil the iron core is removed so that the coil becomes an air cored coil. The inductance of the coil will

increase

decrease

remain the same

initially increase and then decrease

⇒ Two coils have inductances of 8 mH and 18 mH and a co-efficient of coupling of 0.5. If the two coils are connected in series aiding, the total inductance will be

32 mH

38 mH

40 mH

48 mH

⇒ An open coil has

zero resistance and inductance

infinite resistance and zero inductance

infinite resistance and normal inductance

zero resistance and high inductance

⇒ The core of a coil has a length of 200 mm. The inductance of coil is 6 mH. If the core length is doubled, all other quantities, remaining the same, the inductance will be

3 mH

12 mH

24 mH

48 mH

⇒ A 200 turn coil has an inductance of 12 mH. If the number of turns is increased to 400 turns, all other quantities (area, length etc.) remaining the same, the inductance will be

6 mH

14 mH

24 mH

48 mH

⇒ Current changing from 8 A to 12 A in one second induced 20 volts in a coil. The value of inductance is

5 mH

10 mH

5 H

10 H