Users Also Read

MCQ's Search Engine

Electrical Engineering

Mechanical Engineering

Civil Engineering

Automobile Engineering

Chemical Engineering

Computer Engineering

Electronics Engineering

Medical Science Engg

Q1. | A conductor 2 metres long moves at right angles to a magnetic field of flux densit 1 tesla with a velocity of 12.5 m/s. The induced e.m.f. in the conductor will be |

A. | 10 V [Wrong Answer] |

B. | 15 V [Wrong Answer] |

C. | 25 V [Correct Answer] |

D. | 50 V [Wrong Answer] |

View Answer
Explanation:-
Answer : CDiscuss it below :Tejas Said on 2017-01-27 19:53:36BVL=12.5*1*2=25V !! OOPS Login [Click here] is required to post your answer/resultHelp other students, write article, leave your comments |

**Also Read Similar Questions Below :**

⇒ A laminated iron core has reduced eddy-current losses because

more wire can he used with less D.C. resistance in coil

the laminations are insulated from each other

the magnetic flux is concentrated in the air gap of the core

the laminations are stacked vertically

⇒ Air-core coils are practically free from

hysteresis losses

eddy current losses

both (a) and (b)

none of the above

⇒ Which of the following is unit of inductance?

Ohm

Henry

Ampere turns

Webers/metre

⇒ Two coils have self-inductances of 10 H and 2 H, the mutual inductance being zero. If the two coils are connected in series, the total inductance will be

6 H

8 H

12 H

24 H

⇒ In an iron cored coil the iron core is removed so that the coil becomes an air cored coil. The inductance of the coil will

increase

decrease

remain the same

initially increase and then decrease

⇒ Which of the following statements is cotrect ?

The inductance of the coil carrying a constant D.C. current will change the current into pulses

The inductance of the coil carrying a constant D.C. current will increase the current

The inductance of the coil carrying a constant D.C. current will not affect the current

The inductance of the coil carrying a constant D.C. current will decrease the current

⇒ A crack in the magnetic path of an inductor will result in

unchanged inductance

increased inductance

zero inductance

reduced inductance

⇒ In case all the flux from the current in coil 1 links with coil 2, the co-efficient of coupling will be

2.0

1.0

0.5

zero

⇒ Which of the following is not a unit of inductance?

Henry

Coulomb/volt ampere

Volt second per ampere

All of the above

⇒ The co-efficient of self-inductance for a coil is given as

NI/Φ

NΦ/I

NI

^{2}/Φ

NΦ/I

^{2}

⇒ An e.m.f. of 16 volts is induced in a coil of inductance 4 H. The rate of change of current must be

64 A/s

32 A/s

16 A/s

4 A/s

⇒ Which of the following inductor will have the least eddy current losses?

Air core

Laminated iron core

Iron core

Powdered iron core

⇒ Find the force acting on a conductor 3m long carrying a current of 50 amperes at right angles to a magnetic field having a flux density of 0.67 tesla.

100 N

400 N

600 N

1000 N

⇒ A coil induces 350 mV when the current changes at the rate of 1 A/s. The value of inductance is

3500 mH

350 mH

250 mH

150 mH

⇒ Ifcurrentin a conductor increases then according to Lenz's law self-induced voltage will

aid the increasing current

tend to decrease the amount of current

produce current opposite to the increasing current

aid tite applied voltage

⇒ The co-efficient of coupling between two air core coils depends on

self-inductance of two coils only

mutual inductance between two coils only

mutual inductance and self inductance of two coils

none of the above

⇒ Lenz's law is a consecluence of the law of conservation of

induced current

charge

enery

induced e.m.f.

⇒ Two coils have inductances of 8 mH and 18 mH and a co-efficient of coupling of 0.5. If the two coils are connected in series aiding, the total inductance will be

32 mH

38 mH

40 mH

48 mH

⇒ Which circuit element(s) will oppose the change in circuit current?

Resistance only

Inductance only

Capacitance only

Inductance and capacitance

⇒ A 200 turn coil has an inductance of 12 mH. If the number of turns is increased to 400 turns, all other quantities (area, length etc.) remaining the same, the inductance will be

6 mH

14 mH

24 mH

48 mH

⇒ For a purely inductive circuit which of the following is true ?

Apparent power is zero

Relative power is zero

Actual power of the circuit is zero

Any capacitance even if present in the circuit will not be charged

⇒ A conductor carries 125 amperes of current under 60° to a magnetic field of 1.1 tesla. The force on the conductor will be nearly

50 N

120 N

240 N

480 N

⇒ Which of the following circuit elements will oppose the change in circuit current?

Capacitance

Inductance

Resistance

All of the above

⇒ A conductor 2 metres long moves at right angles to a magnetic field of flux densit 1 tesla with a velocity of 12.5 m/s. The induced e.m.f. in the conductor will be

10 V

15 V

25 V

50 V

⇒ The magnitude of the induced e.m.f. in a conductor depends on the

flux density of the magnetic field

amount of flux cut

amount of flux linkages

rate of change of flux-linkages

⇒ A coil is wound on iron core which carries current I. The self induced voltage in the coil is not affected by

variation in coil current

variation in voltage to the coil

change of number of turns of coil

the resistance of magnetic path

⇒ The law that the induced e.m.f. and current always oppose the cause producing them is due to

Faraday

Lenz

Newton

Coulomb

⇒ A 500 turns solenoid develops an average induced voltage of 60 V. Over what time interval must a flux change of 0.06 Wb occur to produce such a voltage?

0.01 s

0.1 s

0.5 s

5 s

⇒ Mutually inductance between two magnetically-coupled coils depends on

permeability of the core

the number of their turns

cross-sectional area of their common core

all of the above

⇒ Higher the self-inductance of a coil,

lesser its weher-turns

lower the e.m.f. induced

greater the flux produced by it

longer the dela' in establishing steady current through it