TEST BOOKLET

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

Test Booklet Series

Serial No.

909769

BAC-38

FISHERIES SCIENCE

Time Allowed: 2 Hours

Maximum Marks: 300

INSTRUCTIONS TO CANDIDATE

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. ENCODE YOUR OPTIONAL SUBJECT CODE AS MENTIONED ON THE BODY OF YOUR ADMISSION CERTIFICATE AND ADVERTISEMENT AT APPROPRIATE PLACES ON THE ANSWER SHEET.
- 3. ENCODE CLEARLY THE TEST BOOKLET SERIES A, B, C OR D AS THE CASE MAY BE IN THE APPROPRIATE PLACES IN THE ANSWER SHEET USING HB PENCIL.
- 4. You have to enter your Roll No. on the Test Booklet in the Box provided along side. DO NOT write anything else on the Test Booklet.
- 5. This Test Booklet contains 120 items (questions). Each item comprises four responses (answers). You will select the response which you want to mark on the Answer Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose **ONLY ONE** response for each item.
- 6. You have to mark all your responses **ONLY** on the separate Answer Sheet provided by using HB pencil. See instruction in the Answer Sheet.
- 7. All items carry equal marks. All items are compulsory. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. For each question for which a wrong answer is given by you, one fifth (0.20) of the marks assigned to that question will be deducted as penalty.
- Before you proceed to mark in the Answer Sheet the responses to various items in the Test Booklet, you have to fill in some particulars in the Answer Sheet as per instructions sent to you with your Admission Certificate.
- 9. After you have completed filling in all your responses on the Answer Sheet and the examination has concluded, you should hand over to the Invigilator the Answer Sheet, the Test Booklet issued to you.

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE ASKED TO DO SO

1.	Wh	ich country ranks first in th	ne world marine	e fish production?	
	(a)	China	(b)	Japan	
	(c)	USA	(d)	Peru	
2.	Mu	d bank is situated in		ž.	
	(a)	Tamilnadu	(b)	Maharashtra	
	(c)	Kerala	(d)	Andhra Pradesh	
3.	Indi	an Exclusive Economic Zo	one occupies an	area of about	
	(a)	1.02 million Sq. Km	(b)	3.02 million Sq. Km	
	(c)	2.02 million Sq. Km	(d)	4.02 million Sq. Km	
4.	Lati	mera is a living			
200	(a)	Mammal	(b)	Reptile	
	(c)	Fish	(d)	Bird	
5.	Whi	ch fishing gear has destroy	ed the pearl oy	ster bed in Gulf of Mannar?	
	(a)	Drift net	(b)	Purse seine	
	(c)	Trawl net	(d)	Traps	
6.	Clos	sed season is a methodolog	ical tool used in	n fisheries	
	(a)	Management	(b)	Statistics	
	(c)	Production	(d)	Environment	
7.	Fish	food is rich in		9	
	(a)	Protein	(b)	Carbohydrates	
	(c)	Saturated fat	(d)	Vitamins	
8.	Hart	oour wave is popularly kno	wn as		
	(a)	Tao	(b)	Tsunami	•
	(c)	Tornado	(d)	Taipei	
9.	India zone	an coast line should be free?	from any coas	stal aquaculture practice upto how many r	neter
	(a)	1000 metre	(b)	500 metre	
	(c)	5000 metre	(d)	100 metre	
10.	The 1	Deemed University in Fish	eries Education	n in India i.e., CIFE is situated in	
	(a)	Cuttack	(b)	Mumbai	
	(c)	Calcutta	(d)	New Delhi	
Series	s-A		2	ВА	C-38

11.	The	endangered aquatic mammal which	eats o	only herbivorous diet is
	(a)	Whales	(b)	Dolphin
	(c)	Dugong	(d)	Walrus
12.	The	World fish production could be inc	reased	still further from the present level only by
	(a)	Aquaculture	(b)	Marine fish catch
	(c)	Reservoir fisheries	(d)	Riverine fisheries
13.	The	salinity range of brackish water is a	s follo	ows:
	(a)	0.5 to 5 %	(b)	0.5 to 1.0 %
	(c)	0.5 to 2 %	(d)	0.5 to 3 %
14.	The	freshwater pearl production technol	logy w	as perfected by
	(a)	CMFRI	(b)	CIFT
	(c)	CIFE	(d)	CIFRI
15.	The	agral roof agyar was much reduced	from t	ha mayiaya atatya dua ta
13.	(a)	coral reef cover was much reduced disease and siltation	(b)	fishing
	(c)	sea weed growth	(d)	The second secon
	(0)	sca weed growth	(u)	sea dicinii population
16.	Beca	ause of over fishing, the potential of	fishe	ries resources of EEZ has reached the state of
	(a)	diminishing	(b)	growing
	(c)	static	(d)	lost
17.	Sac	Surface Temperature data are used	in Dan	anta Caraina ta find aut
17.	(a)	Surface Temperature data are used in coral reef cover		
	(a) (c)	pearl oyster bed '	(b) (d)	molluscan resource potential fishing zone
	(0)	pearr oyster bed	(u)	potential fishing zone
18.				serving the potential fishery resources, the
		ernment should develop policies to		
	(a)	MSY	(b)	MEY
	(c)	Indiscriminate fishing	(d)	Discriminate fishing
19.		nd M are inversely related to		9
	(a)	Z	(b)	LM
	(c)	L∝	(d)	Lm and L ∞
20.	Stoc	k assessment of fisheries resources	is a	method.
	(a)	direct	(b)	indirect
	(c)	direct/indirect	(d)	none of the above
BAC-	-38		3	Series-A

21.	India is getting a share of foreign exchange from the export of seafood and which is about				
	(a)	1000 crores	(b)	2500 crores	
	(c)	4500 crores	(d)	6000 crores	
22.		Method is used internationally to su			
	(a)	Coral	(b)	Pelagic fish	
	(c)	Demersal fish	(d)	Benthic forms	
23.	Sea ecos	ranching of diminishing finfish a ystem.	nd sh	ellfish can be taken upto in	marine
	(a)	stock enhancement	(b)	stock assessment	
	(c)	stock exploitation	(d)	stock depletion	
24.	Ina	normal fish population, the exploita	tion w	otio will be a sual to	
47.	(a)	0.3			
	18 1980	0.45	(b)	0.5	
	(c)	0.43	(d)	0.5 0.6 sh is initiated by	
25.	The	reproductive physiological processe	s in fi	sh is initiated by	
	(a)	environmental cues	(b)	food availability	
	(c)	sight of opposite seas	(d)	none of the above	
			d'		
26.	X an	d Y organs of crustacean are located	d in th	e parts of	
	(a)	Tail	(b)	Abdomen	
	(c)	Perepod	(d)	Eye stalk and head	
27,	Nida	mendal gland is present in the fema	le ren	roductive system of	
	(a)	Sharks	(b)	Gastropod	
	(c)	Oyster	(d)	Squids and cuttlefishes	
28.	Saro	throdon mossambicus is called as		in coming their commencer	
20.	(a)	pouch brooder	(b)	mouth brooder	
	(c)	bubble nest brooder	(d)	none of the above	
	. ,		(4)	none of the above	
29.	Glad	ius or Pen is the chitinous part prese	nt in		
	(a)	Cuttle fish	(b)	Nautilus	
	(c)	Loligo	(d)	Octopus	
30.	Lates	s calcarifer is an euryhaline fish and	whic	h can tolerate range of salinity.	
	(a)	wide	(b)	narrow	
	(c)	both	(d)	none of the above	
Series	-A		4		BAC-38

2 (p.)

31.	Amo	ng the molluscan species,	_ group c	of animals are well developed.
	(a)	Gastropods	(b)	Bivalves
	(c)	Planktonic molluscs	(d)	Cephalopods
32.	The t	otal number of finfish species av	ailable ir	Indian marine ecosystem is about
	(a)	2200	(b)	3200
	(c)	2000	(d)	3000
33.	Shar	ks produce their offspring and ca	are them	by keeping them in their visceral cavity since
	they	are		-
	(a)	Oviparous	(b)	Viviparous
	(c)	Ovo-viviparous	(d)	None of the above
34.	Pitui	tary secretes GnRH which influe		
	(a)	Sex hormones	(b)	Growth hormones
	(c)	Both	(d)	None of the above
25		C. I. J.	romilota t	hair hypogmolarity state when compare to the
35.		rosmolarity environment.	egulate t	heir hyposmolarity state when compare to the
	(a)	Yes	(b)	No
	(c)	Both	(d)	None of the above
	(-)		3.73.67	
36.	The	presence of canine teeth in the fi	nfishes d	enotes that they belong to
	(a)	Herbivore	(b)	Omnivore
	(c)	Carnivore	(d)	All the above
			n_a	1 1 2
37.		term Aquaculture, aimed at prod		
	(a)	Production	(b)	All activities
	(c)	Processing	(d)	Marketing
38.	Cult	ture of Oysters in Greece was me	ntioned b	ру
	(a)	Aristotle	(b)	Pliny
	(c)	Alikhuni	(d)	Gilbert
39.	Cult	ture of Marine Fish, Mollucs and	Shell Fis	shes began in India in
	(a)	19 th Century	(b)	18 th Century
	(c)	17 th Century	(d)	16 th Century
40.	Mat	rine animals produce		e e
	(a)	Very small eggs	(b)	Larger eggs
	(c)	Alevins	(d)	Juvenills
BAC	.38		5	Series-A
27/1				

StudySite.org

41.	Fre	shwater fish species produces			(K)
	(a)	Small eggs	(b)	Larger eggs	
	(c)	Larvae	(d)		
42,	Mil	k Fish reproduces in			
	(a)	Freshwater	(b)	Lagoons	
	(c)	Sea	(d)	Coastal Water	
			(4)	Coastai Water	
43.	Tru	e Aquaculture is found on			
	(a)	Hatcheries & Nursery	(b)	Hatcheries & Rearing Pond	•
	(c)	Stocking Pond and Rearing Pond	(d)	Nursing & Stocking Pond	
44.	Con	iversion of Natural productivity into	food	for human consumption is termed as	
	(a)	Intensive aquaculture	(b)	Extensive Aquaculture	
	(c)	Semi Intensive Aquaculture	(d)	Traditional Aquaculture	
	3 6		(4)	Traditional Aquaculture	
45.	Area	a in which aquaculture is not develo	ned	03	
	(a)	Canal water	(b)	Reservoir	
	(c)	Open sea	(d)	Coastal water	
		•	(-)	Country Water	
46.	Whi	ch is most important variables for a	ll aqu	atic organisms?	
	(a)	Light	(b)	Temperature	
	(c)	Food	(d)	Oxygen	
47.	Salts	s present in dissolved state in sea wa	iter ar	e defined by	
	(a)	5%	(b)	50 %	
	(c)	500 %	(d)	5000 %	
12121					
48.		most common way of measuring dis	ssolve	d Oxygen content is the	
	(a)	Burette Method	(b)	Winkler Method	
	(c)	Colorimetry	(d)	Digital Method	
49.	A mi	xture of physical, chemical & biolo	gical	mechanisms is called as	
	(a)	Ammonia cycle	(b)	Nitrogen cycle	
	(c)	Phosphosrus cycle	(d)	Colorimetry	
50.	Whic	ch one oxidises organic matter rapid	ly in v	vater?	
	(a)	Oxygen	(b)	Ozone	
	(c)	CO ₂	(d)	NH ₃	
Series	-A		6		BAC-38

51.	Roti	fers are cultured in		-	
	(a)	Still water	(b)	Running Water	
	(c)	Brackish water	(d)	Oxygenated Still water	
52.	Don	ninant planktonic crustaceans in salt	water	is	
	(a)	Ostracods	(b)	Daphinia	
	(c)	Artermia	(d)	Moina	
53.	Mol	luscs belong to the class			
	(a)	Crustacea	(b)	Bivalvia	
	(c)	Mytidae	(d)	Lamellibranchs	
54.	The	species which is not found in fresh	water	is	
.50	(a)	Metapenacus	(b)	Macrobrachium	
	(c)	M. barbata	(d)	M. Rosenbergii	
55.	Post	larva of prawn are formed from		Zoaea	
	(a)	Nauplius	(b)	Zoaea	
	(c)	Mysis	(d)	Female	
56.	Eye	stalk ablation is for	. 4		
	(a)	Gonadal development by the horn			
	(b)	Accumulation of hormone in eye	stalk		
	(c)	Removal of eye stalk	131		
	(d)	Reduction of gonodal developmen	ıt		
57.	Fres	hwater Prawns are found in			
	(a)	Temperate water	(b)	Tropical waters	
	(c)	Coastal waters	(d)	Lagoons	
58.	Tran	sparency of water is measured by			
	(a)	Meter scale	(b)	Secchi disc	
	(c)	Lux meter	(d)	Nano meter	
59.	Сург	rinus Carpio is			
	(a)	Herbivorous	(b)	Carnivorous	
26	(c)	Omnivorous	(d)	Insectivorous	
60.	Mos	t of the Indian aquaculture takes pla	ce in		
	(a)	Cold water	(b)	Warm water	
	(c)	Brackish water	(d)	Coastal water	
RAC	-38		7		Coming

61.	Ind	uced breeding technique was ad	opted in the	he year	
	(a)	1950	(b)	1957	
	(c)	1960	(d)	1962	
62.	Нур	popyzation is done by			
	(a)	FSH hormone	(b)	Crude PG extract	
	(c)	Ovatide	(d)	Ovaprim	
63.	Оре	erational research projects on co	mposite c	ulture was started in the year	
	(a)	1980	(b)	1983	
	(c)	1987	(d)	1993	
64.	Inte	nsive culture is profitable in			
26	(a)	Carp Culture	(b)	Catfish culture	
	(c)	Cold water culture	(d)	Shrimp culture	
65.	Mill	k fish naturally breeds in		Freshwater	
	(a)	Brackish water	(b)	Freshwater	
	(c)	Seawater	(d)	Cold water	
66.	Biol	ogical causes of fish diseases is	4		
	(a)	Parasites	(b)	Fish	
	(c)	Human	(d)	Animal	
67.	Uoto	procis is approcite to the vil			
07.		erosis is opposite to the phenome			
	(a)	Out breeding	(b)	Inbreeding	
	(c)	Cross breeding	(d)	Selective breeding	
68.		ch one is an example of intergen	ieric hybri	d?	
	(a)	L.calbasu X L. rohita	(b)	L.bata X L.calbasu	
	(c)	L.rehita X C.catla	(d)	L.rohita X L.bata	
69.		ch one is a type of female hetero	morphic g	genetic sex in Fishes?	
	(a)	XO	(b)	XY	
	(c)	ZW	(d)	XXY	3/
70.	Whic	ch one is not degraded to succing	yl COA ?		
	(a)	Methionine	(b)	Isoleucine	
	(c)	Histidine	(d)	Valine	
Series	-A		8		BAC-38

71.	Cyst	eine can be metabolised from		
	(a)	Methionine	(b)	Tryptophan
	(c)	Lysine	(d)	Proline
72. ,		ch one is required for formatting on is enveloped?	f peri	trophic membrane in which faecal pellets of
8	(a)	Cellulose	(b)	Chitin
	(c)	Raffinose	(d)	Stachyose
73.	The	average wave-length of tsunami at s	ea is	
	(a)	20 – 80 km	(b)	100 – 200 km
	(c)	400 – 600 km	(d)	900 – 1000 km
74.		nus glacialis, feeding on Coscinodistiation (R_{max}) . What does R_{max} indicates		o. discards more cells after biting off a portion
	(a)	Maximum respiration	(b)	Maximum input
	(c)	Maximum ration	(d)	Maximum effort
75.		t is the term used for the phenomice water wells up towards the surface		where deep water, which is colder than the
	(a)	Coriolis force	(b)	Current separation
	(c)	El Nino	(d)	Upwelling
76.	Wha	t is the optimum saline range and te	mpera	ture for the culture of marine Chlorella?
	(a)	5-10 ppt and 30 °C	(b)	10-20 ppt and 20 °C
	(c)	0-35 ppt and 25-35 °C	(d)	10-20 ppt and 25-35 °C
77.		nals spending their lives on top of scalled	the air	r-water interface such as water strider, Gerris
	(a)	Neuston	(b)	Hyponeuston
	(c)	Epineuston	(d)	Nekton
78.		a upto the depth to which effective oted vegetation is called	light j	penetration is possible facilitating the growth
	(a)	Pedonic flora	(b)	Emergent flora
	(c)	Littoral flora	(d)	Benthic flora
79.	The	diversity index $D_I = \sum_n \log n$, who	ere 'n'	is the number of individuals in that species
	divid	led by the total number of individua	ls in th	ne eco system. What does the sum indicate?
	(a)	The total number of species present	t	
	(b)	Forecasting of biological system		
	(c)	Quantitative system		N.
	(d)	Cumulative number of species		
BAC-	38		9	Series-A

80. Which of the following is the missing expression of intertidal oscillations as a balance between the inertial forces and the coriolis force of the formula?

$$\frac{?}{dt} = \frac{2\pi v}{T_1}$$

(a) du

(b) di

(c) da

(d) Cf

81. In the transformation of Nitrogen formed in the nitrogen cycle of estuaries, which of the step is transformed ammonification process?

- (a) $NH_3 \longrightarrow NO_3^-$
- (b) NO_3^- , NO_2^- , $N_2O \longrightarrow$ gaseous products
- (c) $R NH_2 \longrightarrow NH_3$
- (d) $N_2 \longrightarrow NH_3$

82. Surface waves in deep water (H/ λ > 0.25) which disperse and satisfy a dispersion relation $W^2 = gk$ is called ::

- (a) Deep water wave
- (b) Edge wave
- (c) Equatorial wave

(d) Evanescent wave

83. In the marine and estuarine environment, what is the behaviour element of ⁴⁰k, ⁸⁶Rb, and ¹³⁷Cs?

(a) Barium

(b) Potassium

(c) Carbon

(d) Strontium

84. In the absorption of nutrients from the aquatic medium, by the formula $V = \frac{Vm.S}{K_s + S}$, K_s represents what aspect ?

- (a) Concentration of elements in the ambient medium.
- (b) Maximum specific rate of element absorption from the medium.
- (c) Medium concentration, when 'V' reaches ½ of the maximal value.
- (d) Algae's capacity to absorb nutrients at low ambient concentrations.

85. Ziehl-Neelsens staining reaction is a

(a) Simple staining

- (b) Differential staining
- (c) Specific staining
- (d) All of these

Series-A

10

BAC-38

86.	Ma	c Conkeys agar is a			
	(a)	Simple media	(b)	Selective media	
	(c)	Differential media	(d)	Selective differential media	
87.	Ma	gnification of oil immersion	nobjectives is		
	(a)	100	(b)	50	
	(c)	30	(d)	20	
88.	The	most specific immunoglob	ulin is		a
	(a)	Ig A	(b)	Ig E	
	(c)	Ig G	(d)	Ig D	
89.	An	example for a spore forming	g bacteria		
	(a)	Salmonella	(b)	Shigella	
	(c)	Klebsiella	(d)	Bacillus	
00	15 <u></u> 15			Bacillus	
90.		part of the bacteria respons	ible for Grams	s reaction	
	(a)	Cell wall	(b)	Plasma membrane	
	(c)	Cytoplasm	(d)	Nuclear material	
91.	The	temporature of outs alone of	10 11		
71.	(a)	temperature of autoclave at 110 C			
	(c)	120 C	(b)	115 C	
	(0)	120 C	(d)	125 C	
92.	The	first used antiseptic is			
	(a)	KMnO ₄	(b)	H_2O_2	
	(c)	Phenol	(d)	None of these	
93.	Med	ium used for sugar fermenta	ation reaction	is	
	(a)	Peptone water	(b)	Nutrient broth	
	(c)	Normal saline	(d)	All of these	
94.	Aflat	toxin is produced by			
	(a)	Bacteria	(b)	Virus	
	(c)	Fungus	(d)	Protozoa	
95.	Prior	as are infectious particles ha	ving only		
	(a)	DNA	(b)	RNA	
	(c)	Protein	(d)	Lipids	
BAC-	-38		11		Series-A

96.	Imm	unoglobulins are produced by			ti.
	(a)	Monocytes	(b)	Eosinophils	
	(c)	Basophils	(d)	Lymphocytes	
97.	A co	mmercial fishing method not usuall	y asso	ciated with FAD's	
	(a)	Purse seine	(b)	Ring seine	
	(c)	Hook & line	(d)	Trawl	
98.	Dou	ble rig trawling originated in			29
	(a)	Gulf of Mexico	(b)	Gulf of Cambay	
	(c)	Sargasso sea	(d)	Mediterranean sea	æ
99.	'Kite	es' are used to improve the followir	ng fund	ction of trawls:	
	(a)	Horizontal opening	(b)	Vertical opening	
	(c)	Speed	(d)	Drag	
			197 1 188 1088512.	1	
100.		tangular vertically curved otter boar			
	(a)	Suberkrub boards	(p)	Polyvalent boards Cobb pelagic boards	
	(c)	V-boards	(a)	Cood peragic boards	
101.	. Barl	bless hooks are used in			98
101	(a)	Tuna long line	(b)	Tuna pole and line	
	(c)	Tuna trolling	(d)	Tuna jigs	
400-00-00-0	envisoro liro				
102		ysaccharide present in prawn shell	(L)	Chitin	
		Glycogen	(q)	Collegen	8
	(c)	Cellulose	(d)	Collagen	
103	. An	index of oxidative rancidity			
	(a)	TBA value	(b)	Iodine value	•
NI .	(c)	TMA value	(d)	None	
104	l. Ins	trument used for analysis of antibio	tic res	idue in fish meat	
2003/00/48/20	(a)		(b)		
	(c)		(d)	UV spectrophotometer	`
Ser	ies-A		12		BAC-38

103	. Ine	name of canning originated from		
	(a)	Peter Durhand	(b)	Esty and Meyer
	(c)	Nicholas Appert	(d)	Louis Pasteur
106.	The	nackaging material with the high	haat m	
100	follo	owing is	nest r	moisture and gas barrier property among the
	(a)	Polyester	(b)	High density poly ethylene
	(c)	Aluminium foil	(d)	Polypropylene
107.	One	rating temperature of a plate freezer	rie	
	(a)	-18 °C		20.90
	(c)	-30 °C	(b)	-20 °C
	(0)	-50 C	(d)	−40 °C
108.	A ur	iversal chilling medium for fish		
	(a)	CaCl ₂ brine	(b)	ice
	(c)	Liquid nitrogen	(d)	ice ammonia
100	_			O P
109.		r created by random sampling is sin		alled by Statistician as
	(a)	Statistical error	(b)	Sampling error
**	(c)	Population error	(d)	Experimental error
110.	We o	obtain biased sample when we use	17) *
	(a)	Random sampling	(b)	Accidental sampling
	(c)	Cluster sampling	(d)	Any other
444				
111.		smooth, bell shaped curve has a spe	cial na	ame
	(a)	Normal curve		
	(b)	A distribution with positive skew		
		A distribution with negative skew		
	(d)	Any other		
112.	The i	nterquartile range is the range of the	e mida	dle
	(a)	50% of the population	(b)	70% of the population
ž	(c)	20% of the population	(d)	90% of the population
113.	When comp	we want to examine the relation ute a	nship	between two quantitative sets of score, we
	NATIONAL PROPERTY.	Correlation coefficient	(b)	Regression coefficient
	(c)	Analysis of variance	(d)	Student's "t" test
BAC-3	38	<u>,</u>	13	Series-A
		,		

114.	The f	irst Krishi Vigyan Kendra was esta	blishe	d under
	(a)	Assam Agricultural University		
	(b)	Tamil Nadu Agricultural Universi	ty	
	(c)	Rajendra Agricultural University		
	(d)	Bidhan Chandra Krishi Vidyalaya		2
115.	Meth	nod demonstration is		
	(a)	Mass approach	(b)	Individual approach
	(c)	Group approach	(d)	Any other
116.	Socia	al Change involves alteration		
	(a)	in Both Structure and function of	a Soci	al System
	(b)	Only in Structure		
-	(c)	Only in Function		
	(d)	Any other		org
				O ²
117.	The	first step in Fishery Extension Prog	gramm	e Planning is
	(a)	Collection of Facts	K	
	(b)	Implementation of the programme	е	
	(c)	Monitoring of the programme		
	(d)	Evaluation of the programme		
118.	The calle		et due	to usages, wear and tear and obsolescence is
	(a)	Depreciation cost	(b)	Recurring cost
8	(c)	Fixed cost	(d)	Variable cost
119.	The	most profitable marketing channel	for fis	h producer is
	(a)	Producer to consumer		
	(b)	Producer to retailer to consumer	8	
	(c)	Producer to wholesaler to retailer	r to co	nsumer
	(d)	Any other		
120	. The	slide projector is based on the prin	ciple	of
	(a)	Direct projection	(b)	Indirect projection
	(c)	Reflected projection	(d)	Any other
Seri	es-A	-	14	BAC-38

Space For Rough Work

BAC-38

15

Series-A

Space For Rough Work

Series-A 16 BAC-38